1. Overview of the Automated Instrumentation and Monitoring System

Writing large-scale parallel and distributed scientific applications that make optimum use of
computational resources is a very challenging problem. Very often, resources can be under-utilized due to
performance failure in the application being executed. Performance tuning tools are essential to expose
these performance failures and suggest how program performance should be improved.

AIMS, an Automated Instrumentation and Monitoring System, consists of a suite of software tools for
measurement and analysis of performance of FORTRAN and C message-passing programs written using
the NX, PVM or MPI communication libraries. As shown in Figure 1-1, the AIMS tool kit includes:

¢ A source code instrumentor, xinstrument , inserts performance monitoring routines into the
application. The user may selectively control the instrumentation of the source code.

¢ A runtime performance monitoring library, or monitor , provides a set of monitoring routines that
measure and record various aspects of program performance, such as message-passing overhead,
synchronization overhead, and time spent in subroutines.

AIMS — An Automated Instrumentation and Monitoring System

Run-time Monitoring

Instrumented
Instrumented Code Executable

Instrumentation

C or FORTRAN

Native Code Multiprocessor

application code

calls to the s _>
monitor

|-P“xinstrument”

T “UK, Xisk”

SGI Sun Sparc =
Visualization / Analysis

””

PC
Intrusion Compensation

AIMS 3.2 Manual 1 January 14, 1997

Running AIMS consists of the
three basic steps shown in Figure 1. Instrument the source code. (Chapter 2)

1-2: instrumenting the source 2. Monitor the application (Chapter 3)

code,‘con‘lplhng and running » Copy other files not instrumented (including makefiles, include
(monitoring) the application, and ! . i . . .
files, input files) into the inst/ directory.

analyzing the trace file using
various analysis tools. + Build the instrumented source code.

Instrumentation is the process of Run the application
adding monitoring routines into * Sort the trace file (Intel iPSC/860 and Paragon only)
the application for performance 3. Analyze the trace file using the analysis tools. (Chapters 4-6)
data collection. xinstrument
regards the source code as a nested
collection of constructs, which are logical Figure 1-2: Using AIMS in Three Basic Steps.
entities of the program, such as conditionals, loops, subroutines, or communication calls. xinstrument
enables users to selectively instrument only source code that is of interest to them. In addition to inserting
instrumentation at appropriate locations in the application, xinstrument generates two important files:
an application database and an instrument-enabling profile. These files, and the instrumented source will be
used during run-time monitoring. xinstrument will be discussed in Chapter 2.

After instrumentation, is the monitoring phase, shown in Figure 1-3. The user must compile the
application in order to build the instrumented source code containing event recorders that were inserted
during instrumentation. The user links the instrumented source code with the monitor to create the
instrumented executable. When the application is executed on a multiprocessor, the event recorders write
records into memory buffers at each processing node. The contents of these buffers are intermittently
written (or flushed) to disk when the buffer becomes full. This creates a trace file containing time-stamped
events for each occurrence of an instrumented construct. Because writing the buffers to disk is time
consuming, the frequency of file flushing can be controlled by the user via selection of different buffer sizes.
(See Section 2.4 on the xinstrument Settings Pane.) Alternatively, changing the Monitor Mode from
Trace to Statistics in the Settings Pane can be used to generate only summary statistics. With this option
turned on, during execution of the instrumented code, an aggregate time will be calculated for each
instrumented construct, and a count will be made of the total number of times it was executed. This will
result in a much smaller file than a trace-file.

Record Buffer System Disk
SUBROUTINE xyz : 21366730
CALL proc_begin(3,0) 9146072
CALL sync_send(...,3,1) 151103272... -
312451730 race
File

CALL sync_recv(...,3,2)

CALL proc_end(3,0)
END

Figure 1-3: AIMS’ monitoring phase. Instrumented code is executed and writes buffers to system disk.

The monitor performs other important tasks The AIMS clock skew mechanism corrects for differences
in workstation clocks, and the cost model generation calculates, by experiment, the latency and cost per
byte for sending messages in the parallel virtual machine. Both of these are extremely useful when trying
to present the most accurate order of events and are done transparently by the monitor . In addition, the
monitor is responsible for remembering the name of the machine that ran a task, converting PVM task
identifiers to node numbers, and sorting the trace file.

After the application has terminated and the trace file is saved, the user can analyze the performance of
an application by using various tools which AIMS provides. VKs displays present information such as:

AIMS 3.2 Manual 2 January 14, 1997

active subroutines, disk accesses, messages sent between nodes; and the route messages travel in a
network of workstations. Some displays scroll along as time passes, showing a segment of the program’s
history, while others animate each state in sequence. Several displays can be viewed at once. The trace
file can be stepped through or visualized at high speed, stopping only when certain subroutines are
invoked. A source code click-back capability allows easy examination of the source code corresponding to
selected events on the display.

Another tool, tally , provides statistical summaries and indices that describe program behavior. tally
generates a list of resource-utilization statistics on node-by-node and routine-by-routine bases. The routine
statistics give information typically provided by profilers with respect to amount of time spent in various
functions. In addition, it provides easy access to the percentage of execution time spent communicating
and the significance of the communication time in comparison with the total program execution time. The
statistics can help to quickly determine the sections of code which needs to be tuned. The output of tally
can be used as input to statistical drawing packages such as Excel and WingZ.

A tool for mapping out the physical network configuration of the network is sysconfig, described in
section 6 of this manual. Additional information about AIMS may be found in the papers listed in
Appendix A. An installation guide may be found in Appendix B.

2. Instrumentation

xinstrument allows the user to select specific source code constructs to be instrumented. When a con-
struct is instrumented, it is actually replaced or surrounded by calls to AIMS’ monitoring routines. Each in-
strumented construct generates a time-stamped event when executed. Typical constructs to be instru-
mented include message sends, receives and synchronizations. In general it is useful to instrument all
communication calls and the subroutines that do useful work. Subroutines that are called often without
making a significant contribution (e.g., random number generators) are generally not useful to monitor and
will produce many uninteresting events in the trace file. However, it would probably be useful to monitor
routines like matrix multiplication. It is important to remember that if a routine is uninstrumented, trace
file analyzers will be unable to provide any insight into the routine’s activity. Time spent in
uninstrumented routines is lumped together with the entire application’s execution time. Users usually
find this acceptable for routines that are just called as initialization in their application.

Some users who want to focus inside a routine will want to instrument loops and conditional statements.
This will generate a separate event for each iteration of a loop or pass through a conditional. This can
result in many events being generated, so it is important to estimate how many times a statement will be
executed so that you don’t write to disk every second, or fill up your file system with trace data. Itis
recommended that you start with the defaults and increase the detail as you need it and as you become
more familiar with xinstrument

2.1 Invoking xinstrument

xinstrument should be invoked from the directory containing the source code. It is invoked in one of
the following ways:

xinstrument

xinstrument -help provides help information

xinstrument -adb <application database> allows specification of an
existing application database file

xinstrument -overwrite allows existing instrumented files

to be overwritten

Invoking xinstrument will bring up the display shown in Figure 2-1. The xinstrument display
consists of three sections, or panes: (1) the Status Pane on the upper right, (2) the Settings Pane on the
lower right, and (3) the Construct-Tree Pane on the left. The Status Pane informs the user as various actions
(such as file loading or instrumentation) are taken by xinstrument . The Settings Pane displays various
AIMS parameters (e.g., where instrumented files are to be written). The Construct-Tree Pane provides a

AIMS 3.2 Manual 3 January 14, 1997

structured view of the application and allows selective instrumentation. Pull-down menus at the top allow
various aspects of the instrumentation process to be controlled.

Once xinstrument has been invoked, the Settings Pane shown in the lower right corner of Figure 2-1
can be used to customize the monitor parameters. Users may take the defaults shown in the Settings Pane
when it is brought up, or they may make other choices by selecting the appropriate button or typing the
appropriate value. For example, for the Monitor Mode, the user may select either the Trace Mode (for a
trace file) or Statistics Mode (for summary statistics). In the case of the Trace Mode, the buffer size can be
set to minimize flushing. The name and directory location of the output trace file may also be changed.
The options for the Settings Pane are shown in Table 2-1.

2.2 Using xinstrument

There are three components to the pull-
down menu: Files, Options, and Advanced
Options. First choose Load Modules from
the Files menu. (See Table 2-2 for the
possible actions from the Files menu.) A
dialog box, like the one shown in Figure
2-2, will be brought up to help select the
files to be loaded. It is important to
specify the language and platform for the
selected files before loading. If the
platform shown is incorrect, use the pull-
down button to view alternate selections.

When the platform is correct, select the
files to be loaded. Files to be loaded
should be FORTRAN or C source code
and may contain a main program, a
subroutine, multiple subroutines, or a
combination. A file containing the main
program must be loaded. If necessary,
select the appropriate directory by
clicking on it or enter a new one in the
Filter box and click the Filter button. Then
select a file to be loaded by clicking on it.
Multiple adjacent files may be selected by

o (o (o) e o [8f s

=]

ol o

edge_news.f

_ns.f

Subroutine [edge_s]

Recy frecv]

MsgWait [msgwait

Return [Return]

v 1]

Figure 2-1: Display for controlling xinstrument

holding down the mouse button and dragging it across the files. Files may be deselected by clicking on
them a second time. After selecting the files to be loaded, click the Load button in the dialog box. After the
files are loaded, click the Done button on the dialog box.

Table 2-1: Summary of options for the Settings Pane.

Field Comments
Output Indicates where instrumented files are to be written. By default, ./inst is used.
Directory
File Indicates where the trace file is to be written. By default, TRACE.OUT is used. All nodes of

Name the multiprocessor must recognize the pathname specified here.

Monitor | Setting Monitor Mode to Statistics (as opposed to Trace) generates only summary statistics

tics and is not selectable.

Mode (as opposed to a lengthy trace file of events).
Buffer If Monitor Mode is in Trace, buffer size is user selectable. If Statistics mode is used, Buffer
Size Size indicates the amount of memory needed by the monitor to store the summary statis-

AIMS 3.2 Manual

January 14, 1997

The next step is to decide on the instrumentation to be done.l To take the default instrumentation (all
communication constructs), select Instrument All Modules. After the modules are instrumented, select Exit
(from the Files menu). Alternatively, use the Options menu (Table 2-3) to select either All Subroutines, All
Communications Constructs (the default), All I/O or Enable by Type. If Enable by Type is selected another
dialog box (like the one shown in Figure 2-3) will be brought up to enable instrumentation by construct
type. Click on the appropriate buttons to enable or disable the instrumentation of the constructs. The
constructs selected will be instrumented in all loaded files. After selecting the instrumentation, choose
Instrument All Modules from the Files menu. Finally, select Exit from the Files menu.

Figures 2-2 and 2-3: Dialog Boxes for File Selection and Enable by Type, respectively.

Table 2-2: Files Menu Selections.

Files Actions
Load Modules As shown in Figure 2-2, a dialog box for file selection is brought up. One or
more files may be selected simultaneously. It is important to specify the lan-
guage/platform (C or FORTRAN) for the selected files before loading. Click the
Load button (or press return) to load selected files. Although not all of the
application’s files have to be selected,_the file containing a “main program”
must be loaded. Click the Done button after files are loaded. Loaded files
appears in the Construct-Tree Pane.

Instrument All This instruments all files loaded. Individual modules that are selected may be
Modules instrumented under the Advanced Options menu.
Exit User quits xinstrument

Table 2-3: Options Menu Selections.

Options Actions
All Subroutines Instruments entry to and exit from all subroutines.
All Instruments all sends and receives. This is the default.
Communicatio
n Constructs
All I/O Instruments all I/O activities (read() , write() ,io _wait() ,| seeks() etc.)

Enable by Type As shown in Figure 2-3, a dialog box is brought up allowing customized control
for instrumentation to all loaded files. Each type may be enabled, disabled, or
left as is. Click Apply to Loaded Files to execute the selection. Click Cancel to
exit without affecting current instrumentation settings.

1 Some versions of AIMS may not implement all communication constructs.

AIMS 3.2 Manual 5 January 14, 1997

More selective instrumentation may be obtained using the Advanced Options menu (Table 2-4) along with
the Construct-Tree Pane (left side of Figure 2-1). Using the Instrument Selected Modules options from the
Advanced Options menu allows users to instrument only selected constructs in the specified files.
Otherwise, the instrumentation applies to all constructs of a specified type in all files. Point-and-click
actions on the Construct-Tree Pane are used to select or deselect constructs to be instrumented.

Constructs that are available for instrumentation are indicated by a surrounding box. When a construct is
selected, it is highlighted. Files and constructs within a file may be selected. Constructs may also be
selected using the dialog box brought up by the Enable Selected Modules by Type option. The various icons
and the actions and effects they represent are summarized in Table 2-5. Holding down the shift key and
clicking with the left mouse button on any displayed construct brings up the corresponding source code in a
pop-up window.

Table 2-4: Advanced Options Menu Selections.

Actions
Instruments files selected in the Construct-Tree Pane.

An Enable by Type dialog box is brought up and applied to files
selected in the Construct-Tree Pane.

Advanced Options

Instrument Selected Modules
Enable Selected Modules

by Type

Remove Selected Modules Unload files selected in the construct tree pane.
Profile Load or Save profiles.

Monitor File Load or Save AIMS.monrc files.

A dialog box is brought up, and preprocessor options for the
parser, such as -D flags can be simply typed in.

Set Preprocessor Options

Table 2.5: Summary of Options for the Construct-Tree Pane.

Icon Displayed Icon’s Meaning Effect of LEFT-Click Icon after Clicking
QI A source file expands file to IB
reveal one level of
detail
= An opened source file hides contents of QI
the corresponding
file
[2 A construct with sub reveal one more v
S clauses level of sub-clauses
v An opened construct hides sub-clauses [2
MsgWait [msgwait] An instrumentable con- | instrument this IMngait [m3gwajtll
struct (e.g. MsgWait) construct

2.3 Files created by xinstrument

The following files are created by xinstrument

¢ Instrumented source code.

¢ AIMS.monrec file containing parameters shown in the Settings Pane and additional, more advanced
options that can only be changed by editing the file directly.

¢ The application database (default name is APPL_DB) that stores information about the static
structure of the application. The analysis tools use this information to relate traced events to
instrumented constructs. This database file is subsequently incorporated at the beginning of the
trace file produced by executing the instrumented application.

* The instrument-enabling profile file that is a table of flags, one for each construct in the application
database. This profile is useful when a user wants to change instrumentation on a source file. The
profile can be used as a “saved” instrumentation default for an application.

and placed in the inst/ or designated output directory:

AIMS 3.2 Manual 6 January 14, 1997

3. Compiling and Running Instrumented Code

xinstrument writes instrumented source files into the Output Directory (default inst/) specified in the
Settings Pane. This directory should have the same structure as the original, therefore it may be necessary
to copy over files such as include files, makefiles, and files that were not instrumented. Afterwards, the
inst/makefile must be augmented to link the AIMS monitor library.

Figure 3-1 shows an example source directory and the steps needed to make the instrumented source
directory identical to the original source directory. The directory containing the application project is
shown on the left of Figure 3-1. The files main.c , subl.c , sub2.c and sub.dir/sub3.c were selected to
be instrumented. After instrumentation, a new directory inst/ was created in which xinstrument
placed four instrumented files, one subdirectory, and the files AIMS.monrc and APPL_DB. Finally, four
remaining files were copied by hand so that inst/ reflects the same structure as my_app/ .

Next the inst/makefile must be modified to link in the AIMS monitor library. Check with the systems
administrator to find the location of this library. In the case of a PVM application, the monitor library is
called pvmlib.a. So if pvmlib.a is in directory /usr/local/lib , the command to compile the
application should include /usr/local/lib/pvmlib.a at the end of the command. The MPI monitor
library is called mpilib.a and is handled in a similar manner. For example, the makefile for PVM
might contain the following lines:

#Specify location of AIMS’ monitor
MON_LIB = $(AIMS_DIR)/lib

#Link application with monitor libraries

app: $(F77) -o app_program $(APP_OBJS) $(MON_LIB)/pvmlib.a

Once the application is compiled and linked, it is ready to run. Execution should produce a tracefile with
the default name of TRACE.OUT or the name indicated in the Settings Pane. With iPSC/860 or Paragon
versions of AIMS, this file will need to be sorted as described in section 3.1. With PVM or MPI versions, a
sorted tracefile (default name TRACE.SORT) will be created.

Directory Structure Before Directory Structure After Directory Structure Ready for
Instrumentation Instrumentation “making” instrumented binary
my_app/) xinstrument my_app/ . my_app/)
| main.c <e— Jpadedand |__ main.c | mainc
| subl.c -e— instrumented | sublc | sublc
| sub2.c a— thesefiles L sub2.c | sub2.c
| stuff.h | swffh | stuffh
| Makefile | — Makefile | Makefile
| inputdata | input.data | input.data
| sub.dir | sub.dir | sub.dir
sub3c |: sub3.c | sub3.c
sub4.c sub4.c | sub4.c These ﬁles
st . are copied
S . | inst by-hand
N — main.c |__ main.c into the inst
created subl.c | sublc directory
these files sub2.c | sub2c /
and the sub.dir stuff.h
subdirectory —
L_ sub3.c | Makefile
| input.data
| sub.dir
sub3.c
sub4.c

Figure 3-1: Illustration of the steps in organizing directories and preparing to use the makefile.

AIMS 3.2 Manual 7 January 14, 1997

3.1 Sorting the Trace File

Sorting the trace file is required for the Intel iPSC/860 and Paragon versions of AIMS, but this is not
needed for other versions of AIMS such as the PVM and MPI versions. The trace file must be sorted
before invoking the trace analysis tools. While the records for each node are already sorted by time within
the trace file, the records for different nodes are interleaved as all nodes use a shared tracefile, and trace
records may therefore be out of order. AIMS provides a tracesort tool for sorting trace files. This tool
may also be used with PVM and MPI versions of AIMS to sort a large tracefile on a system that has more
room than the system on which the tracefile was created. Be sure to type in the redirection indicator (>)
when invoking tracesort as follows:

tracesort <tracefile> > <sorted_tracefile>

3.2 Using the “Profile”

xinstrument can also be used to selectively turn inserted instrumentation on or off in. To do this, load
in the application database that already exists in the /inst directory using the -adb ’ flag on the command
line for xinstrument . After selectively turning on (or off) instrumented constructs, a “profile file” can be
saved (with a user supplied file name) using the Advanced Options menu. Do not re-instrument the
application. Edit the AIMS.monrc file and supply the full pathname of the saved file on the “PROFILE: ”
line. (A new “PROFILE: ” line may need to be created.) The new AIMS.monrc file will be used the next
time the instrumented application executes.

4. Visualizing Trace Files with VK

The View Kernel (VK) animates the trace file obtained by executing an instrumented parallel program.
VKs displays present information such as: active subroutines, disk accesses, messages sent between nodes,
and the route messages travel in a network of workstations. Some displays scroll as time passes, showing
a segment of the program’s history, while others animate each state in sequence. Several displays can be
viewed at once. The trace file can be stepped through or visualized at high speed, stopping only when cer-
tain subroutines are invoked. A source code click-back capability allows easy examination of the source
code corresponding to selected events on the display. There are also many ways to customize the displays
to better reflect the design of the monitored program.

4.1 Invoking VK

VK should be invoked on a workstation that holds the uninstrumented code directory so that the source
files are available for click-back. VK may be invoked in one of the following ways:

VK

VK <sorted trace file>

The trace file specified on the command line should be sorted if necessary (See section 3.1). VKcan view
only one trace file at a time. VK may be invoked with the following options.:

-help for help information
-start <start time> to have VK start the display a specified execution time
-stop <stop time> to have VK stop the display at a specified execution time

If the -help flag is present, VK prints a usage message and exits.

The values <start time> and <stop time> should be non-negative real numbers, which represent
the time in milliseconds. Ifno -start flag is present, VK will begin viewing at the beginning of the trace
file. If no -stop flag is present, VK will view to the end of the trace file (or 1,000,000 msec, whichever
comes first).

AIMS 3.2 Manual 8 January 14, 1997

VKhas a color editor that allows the change of colors associated with various constructs. Sometimes VK
runs out of space for allocating colors. This situation can occur if running several VKs are running, or if
viewing a trace file with a very large number of subroutines and blocks. If a message appears indicating
that VK cannot allocate a sufficient number of colors, VK should be restarted with the -fixcolors flag on
the command line (to disable VK's color editor). If this message appears when VKis started, and other VKs
are running; the execution of one of the other VKs should be halted and then restarted with the
-fixcolors flag as well.

4.2 Using VK

After VKis invoked, a menu like the one in Figure 4-1
appears along with an OverVIEW window like that in
Figure 4-2. If no file was used when invoking VK, select m ’ II |
Load Trace File from the Files menu (Table 4-1) to bring
up a dialog box to enable file selection. If necessary, . \ /L
select the subdirectory, and then select the file to be Figure 4-1: VKs Menu.
loaded. Click on Load to load the file, and then click Exit. The file may now be displayed or other menu
options (Controls, Views, or Legends) shown in Tables 4-2, 4-3, and 4-4 may be selected. For example the
Spokes view may be selected and opened simultaneously with the OverVIEW.

Files Controls Views Legends

When the tracefile is ready for display, the VCR-like controls shown in Figure 4-1 can be used to control
tracefile playback. Once a file has been loaded, and view has been opened, the} (play) button causes VK to
start reading and displaying the trace file. The |« (rewind) button will reset VKto the beginning of the
trace file. Clicking on II (pause) pauses VK If VKwas paused in the middle of the file, pressing } will
cause it to continue beyond that point, but clicking on } at the end of the trace file has no effect. To step
through the trace file one record at a time, click on the N (step forward) button.

Table 4-1: Files Menu Selections.

Files Menu Description
Load Trace File This brings up a file dialog box for loading a new trace file.
Load SysConfig File This brings up a file dialog for loading a SysConfig file (see Section 4.3.2)
to be used in conjunction with the loaded tracefile.
Exit This exits VK.

Table 4-2: Controls Menu Selections.

Controls Description
By Time This allows the user to set pause and resume times for the animation’.
Enable Breakpoints Turning this on will cause VK to stop animation whenever any node en-

ters one of the selected constructs.

Table 4-3: Views Menu Selections.

Views Description
OverVIEW This is an animation with time along the X axis, and nodes along the Y axis.
Spokes This view displays the processes in a circle, with message lines drawn between
them as time progresses. Nodes are color coded.
SysConfig This is a topological view of the network interconnections between
workstations. Paths of messages can be lit, in conjunction with selections made
in the OverVIEW.

AIMS 3.2 Manual 9 January 14, 1997

Table 4-4: Legends Menu Selections.

Legends

Description

Construct Legend

This lists modules instrumented. Any module may be opened to show a
tree of the constructs in that application.

Node States

Shows color key corresponding to the spokes view.

4.3 The VKViews

43.1 OverVIEW

Figure 4-2 contains an OverVIEW of a PVM
program executing on a network of workstations.
On the left hand side are the machine names and
unique numbers marking each PVM task. The time
axis runs horizontally, with the range given at the
bottom of the view. By default, the range is 100
milliseconds. Moving the pointer into the
OverVIEW window and pressing ‘X’ creates a dialog
box in which the horizontal range can be set.

Rows of colored bars scroll left, with each row
representing a PVM task. Each color represents a
different instrumented subroutine. White space
indicates when a task is blocked waiting to
complete a send or receive. In PVM trace files,
white space is also used to indicate message pack
and unpack time. Bars made up of the XX pattern
indicate time spent writing AIMS trace files to disk.

Bars made of the rr pattern indicate a read, and

bars of the L pattern indicate a write. Bars
composed of smiley faces represent Iseek time,
and bars composed of bugs represent Intel

io_wait time. Table 4-5 shows these bitmaps.
During asynchronous I/0O in Intel traces, a line
below the task bar indicates the duration of the ac-
cess, illustrating when overlapped I/0 and
computation occur. Figure 4-3 is an example
OverVIEW with instrumented I/0.

Thin lines drawn at angles between the
horizontal bars represent messages being

OverVIEW

copernicus-e (16)
sigma (15) ~
armstrong (14) 4

bacon (13) I
freya (12) 4
dennett (11)
zaphod (10) ~— @
petri (9) |
elrond (8)
markov (7) ﬁIJ
spartacus (6)
kronos-ether (5) —
faraday (4)]
ptolemy-ethe (3)
sarya (2) A
tatertot (1) m
tatertot (0)
280747.5728 TIME (msec) 281747.5728

Figure 4-2: OverVIEW.

Table 4-5: I/O bitmaps in OverVIEW.

Bitmap

®
R

Meaning

Iseek time

io_wait time

rr read time
rr
L) write time
(i

transmitted between tasks. The left end of the line is the sending side, and the right end the receiving

side.2 Message lines, like subroutine bars, can be clicked on for additional information. The user can
interact with the bars and message lines to learn what code is executing at a given time with the
keystroke and mouse combinations given in Table 4-6. Using different key combinations and mouse
buttons will display the source code or construct tree for a routine.

2 Lines may be colored if individual data structures were instrumented and monitored. When data
structures are monitored, different colored messages represent communication of different data

structures.

AIMS 3.2 Manual

10

January 14, 1997

Table 4-6: Click-back keystroke combinations.

Action

Information desired OverVIEW Object Mouse button Key
Routine name / cause for idle subroutine bar middle
Construct tree of routine subroutine bar middle control
Statistics about message message line left
Construct tree of send task message line left control
Construct tree of receive task message line right control
Source of send task message line left shift
Source of receive task message line right shift

A Construct-Tree view
shows an abstraction of
the code’s structure. An
example construct tree
appears in Figure 4-4.
Construct views are
usually brought up in
relation to some
particular construct in
which the user is
interested (e. g., a
subroutine). This
construct is then
highlighted in the
construct tree view. For
example, Multiply is
the highlighted construct
in Figure 4-4.

OverVIEW may be
instructed to stop
animation upon reaching
a certain routine or
message. To do this
select a construct view
that shows the construct
you are interested in.
Click the box of that
construct so that it is
highlighted. In Figure 4-
5 the Subroutine [Pipel,
Subroutine [Multiply]
and a pvm_recv are all
selectable constructs.
Once the construct is

L

Dver\IIEN

%EEEEEEFFFF;
;mmm:

B AN

5 .5 S 0 o o S S 0o (1 3o S 68 @

" HHHBHHHBHHHBEK &
BHBHBXRRRRRRRRHD i<

P
I
r
A
RBRBRBEICCTRETT - s ; FE
@ RRRRRRE I rrrrr : F ; "
RRRERRRC O IR

N

'311'3'51'5

NraNs s

KRERERRRERER] o & 28
<o RRRRBRRERRRER 38 o 1 A8
RRRRBERREERRRE 38 § N & 28

6084,5384 TIME (msec) 16084,5384 |/

Figure 4-3: OverVIEW illustrating reads, seeks, and io_waits.

N

Figure 4-4: Construct Tree.

highlighted, the menu Controls/Enable Break Points should be selected. When selected, the menu item
should have a small box lit indicating this option is turned on. After resuming animation, OverVIEW will
stop animating and display the construct tree when this event occurs. Note that OverVIEW will stop on
every instance of this event. To turn off the breakpoint select the Controls/Enable Break Points menu again,

and the on box will go away.

AIMS 3.2 Manual

11 January 14, 1997

OverVIEW can also be
5045 1/0-verVIEW AN

instructed to stop
animation at a particular @ lh D “ [i ’ D |L

time. Selecting the

Controls/By Time menu
v | U WL
control panel. Changing _ = e
the resume time in this
st N e (01 LILG L

OverVIEW forward or

backward when
animation coninaes. |~ [AL | b b L)
Setting a pause time will - -
have OverVIEW StOp 6084,5334 TIHE ¢msec) 16084,5384
animation at a particular Figure 4-5: I/OverVIEW.
time. The current time
field is a display and is
not editable. To make the
control panel disappear,
select the Controls/By
Time menu option again. ’
The OverVIEW display /l
can be toggled to show
two additional views: the

.

132000 Msg— VIEW Ay

I/OverVIEW display and

the MsgVIEW display.

This is done by pressing [|

‘e’ (exchange views) when

the pointer is in the 51540.0844 TIME (msec) 61540.0844 |-

OverVIEW window. A
title at the top of the
display indicates which
view is being displayed.
I/OverVIEW (shown in Figure 4-5) displays colored bars indicating read, write, seek, and io_wait time,
should these events be instrumented. The height of a bar represents the number of bytes being accessed.
The number in the upper left corner represents the largest disk access currently on the screen. Disk
accesses of this size are shown as full height bars, while smaller disk accesses have proportionately shorter
bars.

Pressing ‘e’ while in the I/OverVIEW will exchange it for the MsgVIEW (shown in Figure 4-6). In a
sense, MsgVIEW is the inverse of the OverVIEW. Idle time is shown with two toned colored bars, one for
send idling the other for receive idling and time spent computing is shown in white space. Message lines
are also displayed. The height of a bar represents the size of the message. Like with the I/OverVIEW, the
number in the upper left corner represents the largest message currently on the screen, and all smaller
bars are normalized to that size. Messages of this size are shown as full height bars, while smaller
messages have proportionately shorter bars

Figure 4-6: MsgVIEW,

AIMS 3.2 Manual 12 January 14, 1997

43.2 SysConfig View

The SysConfig view is designed especially for understanding the network configuration of workstations.
From a sysconfig file a topological layout can be made of a Parallel Virtual Machine. An annotated
SysConfig view appears in Figure 4-7.

When used in conjunction with the OverVIEW, the SysConfig view can display the path a message takes
through the network and highlight resources used. When a message is clicked on in OverVIEW, the
corresponding path on the SysConfig view is lit between the machines. This is shown in the Figure 4-7
between the machines Tatertot and Ptolemy.

Horizontal lines represent subnets (their IP addresses given on the left). Vertical lines represent
connections from machines to networks. The row of smaller boxes on the far left are routers in the
network.

oo B B

128,102,113.0

128,102,114,0

oo S oo R i |

oscor S - S .. RO .

128,102,114,128

Figure 4-7: SysConfig View.

43.3 Spokes View

To open the Spokes window select the Spokes option, under the View menu. The Spokes view animates
messages passed between tasks while showing the state of each task. Since the tasks are arranged in a
circle some message passing patterns are easier to identify than when shown in OverVIEW. The spokes
view is shown in Figure 4-8. After selecting the Spokes option, select the Nodes States option from the
Legends menu. This will show the Spokes View color key. this is also shown in Table 4-7.

Table 4-7: Spokes View Color Key.

Color State
green Busy
blue Idle receive
yellow Idle send
orange Idle global
brown Idle other
hatched (xx) Flushing
black Not tracing

Figure 4-8: Spokes View.

AIMS 3.2 Manual 13 January 14, 1997

4.4 Speeding up and slowing down VK

If VKis running too slowly, a non-zero jump factor can be specified for the OverVIEW. To enter the jump
factor, press “v” while pointing inside the OverVIEW window. The value of this factor, a number between 0
and 1, inclusive, specifies a minimum fraction of the window that VK must scroll. A value of 0 causes VK to
scroll the minimum amount necessary, but a value of 0.5 will ensure that VK always scrolls by half a
screen. With a larger jump factor VK will scroll fewer times, and will display things faster. In general,
small jump factors of about 0.1 speed up VK greatly without disturbing the display too much. Using smaller
windows and only having one animation active at a time will also speed up animation.

If VKis displaying the trace records too quickly, setting pause times via the By Time menu, or setting
break points on certain constructs will slow it down. Decreasing the jump factor will also slow down the
animation when viewing scrolling displays. If pictures are moving out of the window too quickly, the scale
of the scrolling views can be changed to view a larger segment of the program .

5. tally

tally generates a list of resource-utilization statistics on node-by-node and routine-by-routine bases.
The routine statistics give information typically provided by profilers with respect to the amount of time
spent in various functions. In addition, it provides easy access to the percentage of execution time spent
communicating and the significance of the communication time in comparison with the total program
execution time. The statistics can help to quickly determine the sections of code that need to be tuned. The
output of tally can be used as input to statistical drawing packages such as Excel and WingZ.

5.1 Invoking tally

tally isinvoked with a sorted trace file or a -help flag as follows:

tally <sorted trace file>
-help

If the -help flag is present, tally prints a usage message and exits. If no trace file is specified, tally
uses inst/TRACE.SORT .

5.2 Output from tally

tally produces several tables of statistics. The first table presents data for each function executing in

the program. It is sorted in descending order with respect to function execution times and contains the
following information:

1. Routine: The routine index and the name of the subroutine.

2. Busy time: Time the function was performing useful work. This is the amount of time not spent in
communication.
Global Blocking: Time a routine spent in a global blocking operation.
Send Blocking: Time a routine spent in a send operation.
Receive Blocking: Time a routine spent in a receive operation.
Life time: Time taken to execute instructions in each function (excluding the functions called from
this function).
Percentage Communication: Percentage of total execution time the routine spent in communication.
Communication Index: Time spent in the function with respect to the total time spent in the
program, as well as the percentage of time spent in communication in this function. (The lower
this value, the lower the impact on the total program execution time of reducing this function’s
communication characteristics).

O OU

® =~

AIMS 3.2 Manual 14 January 14, 1997

The second table consists of columns that show the aggregate communication characteristics of nodes
executing the program and contains the following information:

Node number.

Busy time: Time spent not performing communication.

Global Blocking: Time spent in a global blocking operation.

Send Blocking: Time spent in a send operation.

Recv Blocking: Time spent in a receive operation.

Life time: Time spent executing the program.

Percentage communication: Percentage of execution time spent in communication.

Link Contention: Percentage of total communication time a node spent in contention.

PNo oW

After this second table is produced with data for each node, it is produced for each instrumented routine
in the application. All the tables described above are directed to standard output and stored in the file
tally.summary . In addition, two statistical parameters are computed and directed to the standard
output and stored in a file called ncpu.summary . They are: NCPU and routine concurrency.

The NCPU for a given subroutine and a given k is the amount of CPU time used by that subroutine when
k processors are busy, divided by k. For example, the NCPU data for a particular application is plotted in
the lower left-hand-corner of Figure 5-1. It is a highly parallel program with all (16) of the processors
concurrently busy for 325 msecs. During most of that time, subroutine eigv is executing. If a subroutine
spent much time executing when only a few nodes were busy, this may indicate that the routine inhibits
parallelization and may be a bottleneck.

The Routine Concurrency data for the same trace is plotted in the lower right-hand-corner of Figure 5-1.
It indicates the amount of time spent by each subroutine when k copies were executing simultaneously.
This view indicates the degree to which each routine was parallelized. If a routine never has more than a
few copies running simultaneously, it may indicate that the routine is inherently sequential. Note that
this property differs from that of inhibiting parallelism for all subroutines, as described above with the
NCPU chart. As expected, eigv was the most parallelized routine: it executes concurrently on all the
processors for 150 msec.

A great deal of information is output by tally , so using a statistical drawing package to look at the data
can be beneficial. An example of this is shown in Figure 5-1. To facilitate that process, each row of tally’s

tables is a list of numbers or strings separated by tabs. Tables are preceded by a title and separated by a
blank line.

AIMS 3.2 Manual 15 January 14, 1997

o000

AIMS 3.2 Manual 16 January 14, 1997

sysconfig <trace-file>

To use a PVM hostfile type:

sysconfig -hostfile <host-file>

sysconfig will then examine each machine used in the tracefile, or listed in the hostfile. sysconfig
will find what network connections each machine has, and use traceroute to see what route a packet
takes between every machine pair. These routes are assumed to be the path that PVM messages take
between tasks running on the machines. Output will be saved in a file named after the input file with .SC
appended. sysconfig data can be viewed in VK as explained in Section 4.3.2.

7. Customizing AIMS

AIMS tools have many parameters that allow changes to things like fonts, initial window sizes, default
locations of the trace file and application database, and specific features of VKs views. The parameters
have names like xinstrument.height , and vk.overview.font . The sections below explain how to
change the default values of the parameters and how to change the values of certain parameters at run-
time. Appendix C contains a list of AIMS’s parameters.

7.1 Setting Defaults for Parameters

Defaults for each of AIMS’ parameters are built into the system. However, there are a number of ways
to override these defaults. This may be needed if, for example, the default fonts are not available on their
system. The defaults can be set on the command-line or in one of several default files.

7.1.1 Specifying Defaults on the Command Line

Several switches are provided to set values for parameters on the command-line. These are -bg and -fg
for background and foreground, -bd and -bw for border color and border width, and -fn for font. For
example, “VK -bg black -fg chartreuse ” would give a glow-in-the-dark look. In addition, the -xrm
switch can be used to specify the value of any parameter, by following the switch with the full name of the
parameter, a colon, and the parameter’s value. For example, “VK -xrm
vk.overview.messageColor:magenta ” would make it very easy to spot the messages that OverVIEW
draws.

7.1.2 Specifying Defaults in Files

AIMS looks in several files, including .Xdefaults |, for defaults. To specify default values in one of these
files, add to the file lines of the form “<default name>:<default value> “. The * notation may be used
to specify several defaults with one line. For example, the line “vk.*.borderWidth:5 ” will set the border
width of all of VKs views to 5. (The * notation is discussed more fully in many X manuals. See, for
example, Section 11.4 in Volume One, the Xlib Programming Manual, by Adrian Nye.) Lines in a default
file that begin with an exclamation point are treated as comments. A small default file is shown in Figure
7-1.

1 Set default trace file for all X-based tools
* traceFile: inst/tsort

I Set fonts for VK
vk.*.font: *lucida-medium-r-normal-sans-12-*
vk.help.font: *fixed*medium*-r-*-10-*

! Set jump factor to scroll faster
vk.*.jumpFactor: 0.15

! Position the OverVIEW, and make it long
vk.overview.x: 10

vk.overview.y: 200

vk.overview.width: 800

Figure 7-1: Example of X-defaults.

AIMS 3.2 Manual 17 January 14, 1997

7.13 How AIMS Finds Defaults

Like many X-based applications, AIMS looks for defaults in the following four sources, in order, until it
finds a match:

¢ Command line
e File named in the XENVIRONMEN¥ariable (or .Xdefaults file, if XENVIRONMENTS not set)
* Database created by the xrdb program (or .Xdefaults file, if xrdb has not been run)
* The file Aims in the subdirectory /app-defaults
A command-line value takes precedence over a value in a .Xdefaults file, which in turn takes

precedence over one in the system defaults file. If no default value is present in any of the four sources,
AIMS uses its built-in defaults.

7.2 Changing VKs Parameters Dynamically

VK allows the user to change the value of many parameters while the program is running. These dynamic
parameters are changed by pressing certain keys in the appropriate VK window. As a result of the key
press, a window appears. The current value is displayed and can be erased by backspacing. Enter the new
value and hit <Return> or click on the Okay button. If a value is entered that is not legal, the terminal

beeps. Clicking on |« sets the value back to the previous value, and clicking Cancel resets the value and
removes the editing window. The window includes a Help button to explain the selections.

For example, the user may change VKs stop and resume times. To do this, bring up the editing window
by pressing a ‘t’ in the Over VIEW window and then put the cursor over the value to change. Remember to
hit <Return> in the window when done, or the change will not take affect.

The following are the keys corresponding to the different parameters:

Parameter Key
vk.<view>.minTime t
vk.<view>.maxTime T
vk.<view>.jumpFactor jorJ
vk.<view>.minValue \
vk.<view>.maxValue \
vk.<view>.minScalingOp S
vk.<view>.maxScalingOp S
vk.overview.showMarks rorR
vk.overview.showMessages mor M
vk.overview.barWidthFactor borB
vk.overview.drawDividers dor D
vk.commLoad.volumeOrCount corC
vk.commLoad.scaleToFactor oorO
vk.commLoad.scaleWhenFactor w or W
vk.commLoad.scaleAfterValue aorA
vk.inboxSizes.numSizes norN
vk.inboxSizes.maxSize mor M
(node ordering in overview) oor O

AIMS 3.2 Manual 18 January 14, 1997

8. Appendix A. Bibliography

The following is a list of papers that may be useful for the AIMS users.

[1] J. C. Yan, S. R. Sarukkai, and P. Mehra. “Performance Measurement, Visualization and
Modeling of Parallel and Distributed Programs using the AIMS Toolkit”. Software Practice &
Experience. April 1995. Vol 25, No. 4, pages 429-461

[21 S.R.Sarukkai and J. C. Yan. “Event-Based Study of the Effect of Execution Environments on
Parallel Program Performance”. Proceedings of the Forurth International Workshop on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOT
’96), San Jose CA, January 1996.

[31 S.R.Sarukkai, J. C. Yan and M. Schmidt. “Automated Instrumentation and Monitoring of
Data Movement in Parallel Programs”. Proceedings of the 9th International Parallel
Processing Symposium, Santa Barbara, CA. April 25-28, 1995. pages 621-630

[4] P. Mehra, B. VanVoorst, and J. C. Yan. “Automated Instrumentation, Monitoring and
Visualization of PVM Programs”. Proceedings of the 7th STAM Conference on Parallel
Processing for Scientific Computing. San Francisco, CA. February 15-17, 1995. pages 832-837

[6] S.R.Sarukkai, J. C. Yan and J. Gotwals. “Normalized Performance Indices for Message
Passing Parallel Programs,” Proceedings of the International Conference on Supercomputing
ICS-94, Manchester, England, July 11-15, 1994. pages 323-332.

[6] J.C.Yan, M. Schmidt and S. R. Sarukkai. “Monitoring the Performance of Multidisciplinary
Applications on the iPSC/860”. Proceedings of the 1994 Scalable High Performance Computing
Conference, Knoxville, Tennessee, May 23 - 25, 1994. pages 277-284.

[71 J.C. Yan. “Performance Tuning with AIMS — An Automated Instrumentation and Monitoring
System for Multicomputers”. Proceedings of the 27th Hawaii International Conference on
System Sciences, Wailea, Hawaii, January, 4 - 7, 1994. Vol. II. pages 625-633.

[8] J.C.Yan and S. Listgarten. “Intrusion Compensation for Performance Evaluation of Parallel
Programs on a Multicomputer”. Proceedings of the ISCA 6th International Conference on
Parallel and Distributed Computing Systems, Louisville, KY, October 14-16, 1993, pages 427-
431.

[9] J. C. Yan, P. J. Hontalas, and C. E. Fineman. “Instrumentation, Performance Visualization
and Debugging Tools for Multiprocessors”. Proceedings of Technology 2001, San Jose CA,
December 4-6, 1991. Vol. II., pages 377-385.

[10] J. C. Yan, P. Hontalas, S. Listgarten, C. Fineman, M. Schmidt and C. Schulbach. “The
Automated Instrumentation and Monitoring System (AIMS) Reference Manual”. NASA
Technical Memorandum. 108795, December 1993.

AIMS 3.2 Manual 19 January 14, 1997

9. Appendix B. Installation Guide

Installing AIMS requires three steps: creating the source cd
tree, compiling the system, and installing the executables. mkdir aims source
Various portions of AIMS may be installed on different ma- mv aims.tar aims source
chines. The source code is distributed in UNIX’s tar for- cd aims_source
mat. tar xof aims.tar
rm aims.tar

9.1 Extracting the Source Code from the Archive

The first step once the archive (tar) file has been Example B-1
obtained, is to create a directory for AIMS. The tar file
should be installed into that directory (as shown in
Example B-1).

After extracting the file, the source directory should have a Makefile and eight subdirectories:
common/, example/ , instrumentors/ , misc/ , monitor/ , notes/ , sage/ , and tools/ . Once the source
tree has been created, the source can be compiled. To do this, the Makefile in the top-level directory
should first be edited. The following may need to be changed: compilation directives, installation
directories, location of X libraries, default location for binary files, and other system-specific definitions.
These are discussed in turn below.

9.2 Setting Up AIMS for the Installation Site

The Makefile contains various environment settings to help the user customize AIMS for a specific site.
* ARCH— Defines the multiprocessor platform on which AIMS will be used. It is important to build
AIMS for the correct platform. Alternatives for ARCH are shown in Table B-1

Table B-1: Alternative platforms for AIMS.

ARCH (Architecture) Platform to be Used

nx860 NX on the Intel iPSC/860

pvm PVM on Sun and SGI workstations
mpisp2 MPI on IBM SP2

mpi MPI on Sun and SGI workstations

* “Compilation directives” — indicates which parts of

AIMS are to be created. The settings shown in MONITOR=0
Example B-2 will generate binaries for VK tally INSTRUMENTORS=0
and tracesort but NOT generate for the moni tor VK=1

and the instrumentors. ALL components should be TALLY=1

generated the first time AIMS is installed. TRACESORT=1

* “Installation directories” — indicate where the appro-
priate files will be located (as shown in Example B-3).

¢ The location of the X include files and libraries
should then be specified.

Example B-2

INSTALL_DIR = $(HOME)/aims_source/bin
MONITOR_INSTALL_DIR = $(HOME)/aims_source/lib
MAN_INSTALL_DIR = $(HOME)/aims_source/man

Example B-3

AIMS 3.2 Manual 20 January 14, 1997

Finally, there are a few other system-specific definitions required for compiling the system. They are
grouped into three sections, depending on whether the machine is running IRIX, Sun OS, or Ultrix.
“Uncomment” the lines corresponding to the system of choice by removing the “#” signs, ensuring the other
lines are commented out.

9.3 Compiling and Installing AIMS

The system takes about 20 minutes to compile (by typing “make”). When compilation has completed, typing
“make install ” should be typed to install AIMS in the directories specified in the Makefile . If the full
system was created, the executables listed in Table B-2 will be moved to the binary installation directory:
The monitor installation directory will also contain files. The Intel iPSC/860 version produces nodelib.a
and hostlib.a , the PVM version produces pvmlib.a , and the MPI versions produce mpilib.a

Table B-2: AIMS executables.

atopg translates AIMS tracefiles to ParaGraph format

cfp FORTRAN 77 parser for Sigma

dumpdep Sigma utility

stat2tally generates tally output from a .stat file

stattidmap tidmap for .stat files

tally tabulates statistics from the tracefile

tidmap replaces pvm processes-ID’s in the trace file (which are
large integers) by integers ranging from 0 to n-1

tracesort sorts a tracefile by time

unparse Sigma utility

vce Sigma C parser

VK graphically displays the trace file

vpc Sigma utility

xinstrument instrumentor front-end

9.4 Managing Windows With AIMS

AIMS provides application specific buttons and menu options for destroying and closing windows. Some
users depend upon their Window Manager’s title bar menu for quitting or closing windows. However, in
the current version, these Window Manager specific options may cause problems within AIMS. Future
versions will handle these menu options internally. At this time, users should only use the AIMS specific
menu options. Those who use the Window Manager menus, should add to their Window Manager’s
Resource Description File (e.g., . mwmrc, .twmrc , etc.) a menu which contains all of the same options of
their DefaultWindowMenu except the “Close” or “Quit” options (which may map to the f.Kkill and
f.quit_app event functions). This menu should be named “AimsWindowMenu”. In addition, windowMenu
options for each AIMS window should be added to the user’s system default file. If the user is using one of
the AIMS supplied defaults file, these options are already present.

AIMS 3.2 Manual 21 January 14, 1997

10. Appendix C. AIMS’ Parameters
This is a list of AIMS’s parameters.

*circleBox*windowMenu
*controlByTime*windowMenu
*inboxSizes*windowMenu
vk.applicationDatabase
vk.boxes.maxInboxCount
vk.circle.borderColor
vk.circle.foreground
vk.circle.x
vk.clickback.medium.font
vk.commLoad.borderColor
vk.commULoad.font
vk.commLoad.jumpFactor
vk.commLoad.maxTime
vk.commLoad.minScalingOp
vk.commLoad.scaleAfterValue
vk.commLoad.volumeColor
vk.commLoad.x

vk.fixColors
vk.grid.borderWidth
vk.grid.height

vk.grid.y
vk.inboxSizes.background
vk.inboxSizes.font
vk.inboxSizes.maxSize
vk.inboxSizes.x
vk.menu.borderColor
vk.menu.foreground

vk.nodeState.blockedGlobal.color

vk.nodeState.font
vk.overview.background
vk.overview.borderWidth
vk.overview.height
vk.overview.maxTime
vk.overview.showDividers
vk.overview.width
vk.startTime

vk.traceFile
vk.traceRecord.borderWidth
vk.traceRecord.height
vk.traceRecord.y

AIMS 3.2 Manual

*commLoad*windowMenu
*grid*windowMenu
*nodeState*windowMenu
vk.blocked.color
vk.boxes.spectrumSize
vk.circle.borderWidth
vk.circle.height

vk.circle.y
vk.clickback.small.font
vk.commLoad.borderWidth
vk.commULoad.foreground
vk.commILoad.maxCount
vk.commLoad.maxVolume
vk.commLoad.minTime
vk.commLoad.scaleToFactor
vk.commLoad.volumeOrCount
vk.commLoad.y
vk.grid.background
vk.grid.font

vk.grid.width
vk.help.normfont
vk.inboxSizes.borderColor
vk.inboxSizes.foreground
vk.inboxSizes.numSizes
vk.inboxSizes.y
vk.menu.borderWidth
vk.menu.title.font

vk.nodeState.blockedReceiving.color

vk.nodeState.notTracing.color
vk.overview.barWidthFactor
vk.overview.font
vk.overview.highlightColor
vk.overview.messageColor
vk.overview.showMarks
vk.overview.x

vk.stopTime
vk.traceRecord.background
vk.traceRecord.font
vk.traceRecord.width
vk.utilizationLegend.font

22

*constructTreeShell*windowMenu

*help*windowMenu
*vk*windowMenu
vk.boxes.breakpointsEnabled
vk.circle.background
vk.circle.font

vk.circle.width
vk.clickback.big.font
vk.commload.background
vk.commULoad.countColor
vk.commULoad.height
vk.commT.oad.maxScalingOp
vk.commLoad.minCount
vk.commLoad.minVolume
vk.commLoad.scaleWhenFactor
vk.commLoad.width
vk.eventsLoop
vk.grid.borderColor
vk.grid.foreground

vk.grid.x

vk.help.sharpfont
vk.inboxSizes.borderWidth
vk.inboxSizes.height
vk.inboxSizes.width
vk.menu.background
vk.menu.font
vk.menu.title.foreground

vk.nodeState.blockedSendingColor

vk.nodeState.running.color
vk.overview.borderColor
vk.overview.foreground
vk.overview.jumpFactor
vk.overview.minTime
vk.overview.showMessages
vk.overview.y

vk.timeStep
vk.traceRecord.borderColor
vk.traceRecord.foreground
vk.traceRecord.x

January 14, 1997

